“Every person going home safe and healthy every day.”
Agenda

• Safety History
• Management
• Geology and Reserves
• Operations
 – Challenges at Depth
 – Mining modelling
 – Build to 330
 – Infrastructure
• Projects
 – Vent Shaft Deepening
 – 94 Refrigeration
 – Below 95 Level
• Processing upgrade
• The “One Mine Strategy.”
• Social and Labour Plan
Safety Performance
2006 Lost Time Injuries

Q1 Q2 Q3 Q4 FY'06

Rate

Target 3.5
History

- Exploration – 1950
- Shaft Sinking – 1960
- Mining for 38 years
 - 110 million tonnes
 - 23 million oz
 - 715 000 kg
- Placer Dome Westonaria Joint Venture Created – 1999
- Placer Dome acquired by Barrick – 2006
- Gold Fields – March 2007
Operational Committee

- Executive General Manager
 - Risk Manager
 - Security Manager
 - Personal Assistant
 - Operations Manager
 - Senior Operations Manager
 - Mineral Resource Manager
 - Commercial Manager
 - Process Manager
 - Operations Engineer/Maintenance Manager
 - Human Asset Manager
 - Capital/Projects Manager
 - Operational Excellence Manager

Gold Fields
SOUTH DEEP PROJECT 4 X 4

IMPROVED SAFETY
0 LDI’s

MANAGED COSTS
< R 100 / g

DELIVERY ON INCREASED QUALITY VOLUME
36,400 t per week

IMPROVED PRODUCTIVITY (MAN & MACHINERY)
250 kg / week
Mining Profiles

Production Ounces (330)

- DESTRESS
- TRACKLESS
- CONVENTIONAL
- VCR
- SV1
- VCR PILLARS
SECTION FROM No.1 SUB-VERTICAL SHAFT TO SOUTH DEEP SHAFTS (LOOKING EAST)
Gold Fields
“Quest for the West!”
Resource Comparison

Anglogold
Savuka
1,2 m oz.

Durban Roodepoort
Deep
23,0 m oz.

Harmony
Deelkraal / Elandsrand
29,4 m oz.

Anglogold
Tautona
13,8 m oz.

Goldfields
Driefontein
43,6 m oz.

Anglogold
Mponeng
24,4 m oz.

Goldfields
South Deep
67,1 m oz.

Goldfields
Kloof
71,4 m oz.
South Deep Production Area

OLD MINE

PHASE 1

PHASE 2

1.044 Moz

5.084 Moz

12.565 Moz

11.997 Moz

(UH 9.222 Moz)

SV1 AREA

OLD MINE

SOUTH DEEP MAIN / VENT SHAFT

CURRENT MINE

SOUTH & SV2/3 SHAFT

SV-1 SHAFT

WATER PILLAR

12.044 Moz

5.084 Moz

12.565 Moz

11.997 Moz

(UH 9.222 Moz)
Geology and Reserves

<table>
<thead>
<tr>
<th></th>
<th>GRADE</th>
<th>VOL. ('000)</th>
<th>TONNES ('000)</th>
<th>CONT KG</th>
<th>CONT OZ ('000)</th>
<th>Oz %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven</td>
<td>7.3</td>
<td>4,505</td>
<td>12,209</td>
<td>89,142</td>
<td>2,866</td>
<td>9%</td>
</tr>
<tr>
<td>Probable</td>
<td>6.02</td>
<td>53,089</td>
<td>143,870</td>
<td>865,661</td>
<td>27,831</td>
<td>91%</td>
</tr>
<tr>
<td>Total</td>
<td>6.12</td>
<td>57,594</td>
<td>156,080</td>
<td>954,661</td>
<td>30,698</td>
<td>100%</td>
</tr>
</tbody>
</table>
Location of the Reef Horizons

- Simmers
- South Shaft
- Twins

- Dolomite
- Pretoria Group
- Chuniespoort Group
- Klipriviersberg Group
- Ventersdorp Lava
- VCR and Upper Elsburg Reefs
- Middle Elsburg Reefs

- Kimberley Reefs

- South Reef
- Main Reef

-1400
-1300
-1000

South Reef
Main Reef

-1000
-1300
-1400

Klipriviersberg Group
Chuniespoort Group
Pretoria Group
Ore Body Schematic
Operations
De-stress Philosophy

Virgin Rock rock stress 75 Mpa 11000 psi

De-stressed zone 30 - 40 Mpa 3000-4500 psi

Front abutment stress 500 Mpa 72500 psi

Depth Equivalent 1200m below surface

Depth 2600m below surface

Gold Fields
Operations
De-stress Philosophy

Drift and fill area

Undercut Stope

Geological Drilling
Current Mine – Mechanised mining

View showing a mechanised trackless project in the 95-2-West area – access development

Primary drift mining commences

Primary drifts continuing with benching commencing

Secondary drift mining starts between backfilled primary drifts & benches

Primary and secondary drift and bench mining complete

Access pillar extraction
Mining Methods of Extraction
Drift and Fill

Ledging starts with ramp continuing downwards establishing new panels
Mining Methods of Extraction
Drift and Fill

Destressing continues
Trackless Mini-project access development within destressed target area
Mining of drifts and establishment bench accesses
Mining Methods of Extraction
Drift and Fill

View of two mini-projects
Mini-projects stacked on top of each other
Mining Methods of Extraction
De-stress down dip Philosophy

Schematic view of the Overhand Conventional-mining method that will be applied below 95-Level
Mining Methods of Extraction
Backfill
Mining Methods of Extraction
60ktpm Fleet – Drift and Benching
Mining Methods of Extraction
Bulk – Longhole

Project area destressed
Mining Methods of Extraction
Bulk – Longhole

Top and Bottom access ramp development starts
Mining Methods of Extraction
Bulk – Longhole

View of Longhole Stoping Ramp system
Mining Methods of Extraction
Bulk – Longhole

Complete project showing Destressing, Longhole stoping, Drift & Fill with Benching and Ramp pillar extraction designs
Mining Methods of Extraction
Bulk – Longhole

BULK MINING
Philosophy at South Deep

- Destressing and subsequent massive mining should be looked at holistically
 - Combining activities
 - Destressing creating infrastructure for Longhole stoping

- Maximising the destressed envelopes for massive mining

- Potential profit from destressing without the risk of sterilisation of the orebody

- Minimise thedestressing period before massive mining commences
Criteria for the justification study

- Use a representative portion of the resource for comparative designs

- Complete detailed designs for the following mining methods -
 - Downdip ramp accessed conventional destressing (current philosophy)
 - DTL (down dip trackless longwall) mechanised apparent dip mining
 - HD (Horizontal destressing)

- Designs will be all encompassing (include total extraction and not just the destressing component)
The selected representative portion of the resource (selected area)

950m x 430m
73Mt @ 3.88g/t (all>0g/t)
9.1Moz (resource)
The selected representative portion of the resource (resource model)
The selected representative portion (rotated view of the resource model)
Schematic view of the DTL method (apparent dip low profile mining)

- Stoping drives (2.0x6x20) on strike
- Reef drive (4x4) on strike
- Downdip cleaning drives (2.0x4) 45deg to strike at a 8-10deg apparent dip
- Strike direction
- Mining direction

Legend:
- Backfilled
- Backfill being placed
- Current mining
DTL method - Problems associated with this approach

• The method tries to mimic conventional mining with mechanised equipment (wrong approach)

• Excessive dilution due to structures

• No benefit to future massive mining other than the destressing component
Downdip Ramp Accessed Destressing Current Strategy

- Primary Ramp
- Raise
- Ramp connection
- Spiral
- Timber-bay with travelling-way
- Draw-point with ore-pass
- Secondary Ramp
HD – Horizontal Destressing

- Destress a horizontal slice through the target area with mechanised low profile equipment
- Position destress cuts at 17m intervals (vd)
- Utilise the destress accesses for future longhole stoping
- Share access ramps, ore-passes and services
HD – section through design

Wedge to be extracted with drifts & benches

Destress Stopes

Longhole Stopes

VCR Contact

EC bottom contact
Focus area on next slide
HD – Detailed design

- Destress Stope
- Destress Access
- Longhole Access for backfill & supports
- Longhole Stopes
- Drifts & fill extract wedges (step-effect)
- Longhole Access for Drilling & Mucking
HD - Benefits in this holistic approach

- Less people exposed to the face
- Synergy (step approach as in current massive mining)
- Utilise the same ramp infrastructure
- Higher grade destressing
- No apparent dip (intense geology involvement) structural constraints
- Optimal access for exploration drilling
- Chip Samples become more useful (estimation in trackless horizons)
- Flat dip increase the life and reduce wear on trackless equipment
- The method has a dual purpose for future longhole stoping (access via the destress accesses - reduced access / infrastructural development)
- Having the destress within the trackless target horizon maximizes the destress envelope.
- 297 Ktpm/330Ktpm = 91% of total reserve extracted through mechanised mining methods. 9% - conventional VCR mining (further study to be conducted to assess viability to mechanise with low profile equipment)
Extraction sequence for Longhole Stoping

- Slot Raise
- Slot Raise Slot Stope Blast-1
- Stope Blast-2 Stope Blast-3

Drill & Muck Drive

Support Drive

17m, 15m, 60m

= 41 500 tonnes/ stopes
Mechanised Destress
LP EQUIPMENT
MECHANISED Fleets - Destress

LHD’s and Face Rigs must be obtained from one supplier in order to rationalise spares and reduce training and maintenance costs.

No trucks are required as a result of layouts (centralized ore-passes) reducing tramming distances to optimize costs.

Indications are that 1* LP face rig and 1* 6t diesel LHD with ejector bucket (to maintain flexibility) produces 6,300tpm.

Typical end size of 2mH * 4.5mW

- Mechanised support – to remain semi-manual in the 1.95m stoping
- Water savings derived from pumping is 3.5t/t broken (conventional) versus 0.5t/t broken (mechanised)
- Compressed air savings of 10,000 cfm
Backfill

The major requirement of the backfill is that it fills the stopes to HW on the horizontal (or at least at 1 degree downdip).

Initial indications from external experts is that this is possible, with a CCT and Paste fill due to the positive hydraulic head. The downside is that test work is required – work is in progress.
As a result of the introduction of mechanised destress – the ratio of longhole stoping has increased to 85% with a cost benefits of the R20 / tonne broken. (feasibility figures).

Propose electric LHD tramming (ave distance of 120m, max 150m)

Downside of the electric tramming is that it has not been tried in this application (internationally). Electric tramming does however pose improved benefits in ventilation requirements, maintenance costs (60% of the diesel cost = R146/hour).

Indications are that a fleet of 1* longhole rig and 1*14t LHD produces 74,300 tpm.

Typical end size 15mW * 17mH * 100mL (maximum)
Mechanised Destress

EQUIPMENT - MECHANISED

As a result of the introduction of mechanised destress – the ratio of drift and fill has reduced to 15%.

Diesel LHD tramming to maintain flexibility (ave distance of 120m, max 150m)

Indications are that a fleet of 1* face rig and 1* bolter and 1* 14t LHD to produce 27,400 tpm.

Typical end size 6mW * 5.5mH
GENERAL COMMENTS

Trucking and subsequent conveying of all ore produced from the three mining methods is undertaken in the down-dip ramps, via ore-passes in the above mining methods, until holing to the next level is achieved (whereby the ore will be transported by conveyors via in-stope crushers).

Workshops will be located off the down-dip ramps for all of the mining methods employed. Workshops will also include centralised control rooms.
Mechanised Destress

EQUIPMENT - MECHANISED

WORKING COSTS

Initial indications are that the cost benefit of mechanising the destress are as follows (including overheads):

- Destress conventional costs = R 470/t (forecast in the feasibility)
- Mechanised costs = R 320/t (current forecast)

The working costs will further be reduced as a result of additional long-hole stoping by R 20/t.
Mechanised Destress

EQUIPMENT - MECHANISED

WORK STILL TO BE COMPLETED

- Review of zero based costing for all mechanisation.
- Completion of Rock Engineering support requirements.
- Financial and payback period
- Ventilation strategy to be confirmed
- Detailed Risk Assessment
- External peer review following completion of justification study

FUTURE OUTSTANDING WORK

- Backfill (Capacity and Verification of ability to fill a horizontal stope).
- Caste blasting of broken ore – replacing backfill addition in destress stoping cut (Rock Engineering implications)

 Current integrated study underway (in conjunction with Immo Bock – Innovation Technology Mining) ~ SBM
Future Advancements

- Currently in discussion with Crown Crome to implement hydropower hand held drills off water jet units
- Collaboration with Atlas Copco to automate Trackless processes (Drill units - ABC Regular and ABC Total)
- Full asset tracking and monitoring from centralised control room (incl. weighbridges, rock discharge labelling, material dispensing and management)
- Full mechanisation of all development
- Remote Rock Breaking (from centralised control room)
- Integration and cross communication of Tunnel Manager and Design programme
- Finalise Paste Fill Feasibility
Engineering

- Engineering split into 5 areas of responsibility
 - Old shafts inclusive of surface and underground refrigeration plants and major pumping systems
 - SD Twin shafts inclusive of surface refrigeration plant and BAC
 - Underground production - conventional and TM³ sections (to be revised)
 - Surface area, plants (metallurgy & backfill) and tailings dams
 - Projects, surface & underground
Twin shaft complex

• New shaft commissioned Nov 04
 – BMR Rock and man winder
 – 2* 30 Ton skips
 – 2* 6MW Motors
 – 2990m lift
 – Duty 204,000 tons per month
 – 2990m lift
 – Hoists Men/material to support (2000 people/hr) 180/conveyance
 – 2*4.5MW Motors
Metallurgical plant

- Commissioned June 2002 employs 85 people
- SAG & Ball mill combination designed for 220,000tpm (40% gravity & 60% CIP leach)
- Mill throughput current average 175,000tpm & Progressive gold recovery average 97% [Highest 209,000 Dc 04]
- Unit cost - Y.T.D actual R37/tonne against planned R34/tonne (37% variable)
- World class security systems
- Fully complies with environmental legislation
- EIA in progress for future tailings dams
Annual Operating Costs in Rand per Tonne vs Plant Throughput

Operating Cost, Rand per Tonne

Plant Throughput, Mt/a

Fixed Costs
Variable Costs
Total Fixed + Variable Costs

Current 170ktpm
220ktpm
330ktpm
Engineering

Core functions to support production effort for safe & optimal performance via -

- **Legal conformance**
- **Planned Maintenance:**
 - Routine Work Management
 - Reliability Management
 - Materials Management
 - Cost Management
 - Life Cycle Management
 - Performance Control
- **Project Management**
Improving maintenance management –

Increase Planned - & Reduce Unplanned / Emergency work

Accomplish by:
- **Aligning the production and maintenance strategies**
- **Applying the owner operator principal**
- **Establishing dedicated reliability groups:**
 - Analyse predictive maintenance results
 - Apply techniques & Design out deficiencies (RCM, RCAT, FMEA)
 - Update and implement improved standards and procedures
 - Update maintenance tactics, -service intervals, standard maintenance plans, etc.
- **Setting specific key performance indicators** per element & drive improvement
 - Overall equipment effectiveness = Availability x Utilisation x Quality
Engineering - continue

- Failures are the consequence of poor Designs and Processes that result in costly consequences

- E.g. South Shaft flooding 1st quarter 05
 - Poor design & layout
 - Poor maintenance [impact of FULCO]
 - Poor risk identification
 - Previous occurrence risk mitigation failed
Capital Phase 1 (330 ktpm)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BELOW 95 LEVEL INFRASTRUCTURE (PHASE 1)</td>
<td>85</td>
<td>188</td>
<td>205</td>
<td>219</td>
<td>268</td>
<td>320</td>
<td>1285</td>
</tr>
<tr>
<td>VENT SHAFT DEEPENING</td>
<td>19</td>
<td>110</td>
<td>120</td>
<td>155</td>
<td>96</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>94 LEVEL REFRIGERATION</td>
<td>71</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>METALLURGICAL PLANT INCLUDING BACKFILL</td>
<td>11</td>
<td>12</td>
<td>27</td>
<td>69</td>
<td>65</td>
<td>41</td>
<td>224</td>
</tr>
<tr>
<td>NEW SLIMES DAM</td>
<td>15</td>
<td>43</td>
<td>88</td>
<td>85</td>
<td>59</td>
<td>14</td>
<td>305</td>
</tr>
<tr>
<td>OTHER</td>
<td>64</td>
<td>228</td>
<td>233</td>
<td>215</td>
<td>148</td>
<td>173</td>
<td>1061</td>
</tr>
<tr>
<td>TOTAL</td>
<td>265</td>
<td>638</td>
<td>673</td>
<td>743</td>
<td>636</td>
<td>548</td>
<td>3500</td>
</tr>
</tbody>
</table>

Based Sept 2006 (Real terms)
Capital Project
Phase 1 – Vent Shaft Deepening

Equip Vent shaft with a brattice and deepen to 3005m to hoist 220t ktpm in Oct 2009

94-Level-Refrigeration Project

Develop 100, 105, 110 levels

Develop 110A
Critical Infrastructure

- Equipping Vent shaft with a brattice
- Mid shaft loading on 100 Level to deepen to 110A Level
- Silos moving to south-east of the shaft system
- Conveying to current reef belt system
- Hoisting men, Material & rock through the Vent shaft

Main Shaft -2995mBC
Vent Shaft -2995mBC
Existing Shaft Infrastructure
Metallurgy Plant (220ktpm)
Commissioned June 2002
Creation of a single mining entity

Geological Cross Section (Kloof – South Deep)
Creation of a single mining entity

Development from No. 4 Shaft
Creation of a single mining entity

Production Profile (Tons)
Creation of a single mining entity

Production Profile

Gold Produced

Current Mine | Phase 1 | Phase 2 | Old Mine | 1SV | 2# | 3# | 4# | 7# | 8# | KEA | Surface | Base Case

<table>
<thead>
<tr>
<th>Year</th>
<th>Ounces (x1000)</th>
<th>Kilograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2,250</td>
<td>70,000</td>
</tr>
<tr>
<td>2009</td>
<td>1,929</td>
<td>55,000</td>
</tr>
<tr>
<td>2010</td>
<td>1,607</td>
<td>40,000</td>
</tr>
<tr>
<td>2011</td>
<td>1,286</td>
<td>25,000</td>
</tr>
<tr>
<td>2012</td>
<td>964</td>
<td>20,000</td>
</tr>
<tr>
<td>2013</td>
<td>643</td>
<td>15,000</td>
</tr>
<tr>
<td>2014</td>
<td>321</td>
<td>10,000</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2018</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2020</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2021</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2022</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2024</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2025</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2026</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2027</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2028</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2029</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2030</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2031</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2032</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2033</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2034</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2035</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2036</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2037</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2038</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2039</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2040</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2041</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2042</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2043</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2044</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2045</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2046</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2047</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2048</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The Triple Bottom line!

- Sustainable Development
- Social Responsibility – “are their dogs fat?”
- Profits
Labour Status

<table>
<thead>
<tr>
<th>Department</th>
<th>% of No of Employees</th>
<th>Budget</th>
<th>Number of Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>0.16%</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Conval & Incap</td>
<td>1.59%</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Emp Reps</td>
<td>0.16%</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Fin & Adm</td>
<td>1.43%</td>
<td>75</td>
<td>63</td>
</tr>
<tr>
<td>HR</td>
<td>4.62%</td>
<td>196</td>
<td>203</td>
</tr>
<tr>
<td>In Training</td>
<td>7.44%</td>
<td>267</td>
<td>327</td>
</tr>
<tr>
<td>Logistics</td>
<td>28.87%</td>
<td>1183</td>
<td>1269</td>
</tr>
<tr>
<td>Mill</td>
<td>2.12%</td>
<td>80</td>
<td>93</td>
</tr>
<tr>
<td>Mining</td>
<td>42.38%</td>
<td>2003</td>
<td>1863</td>
</tr>
<tr>
<td>Projects</td>
<td>0.00%</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>RCA</td>
<td>0.39%</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>SHER</td>
<td>3.59%</td>
<td>151</td>
<td>158</td>
</tr>
<tr>
<td>Tech Serv</td>
<td>1.27%</td>
<td>69</td>
<td>56</td>
</tr>
<tr>
<td>TM3 Mining</td>
<td>5.98%</td>
<td>426</td>
<td>263</td>
</tr>
<tr>
<td>Total</td>
<td>100.00%</td>
<td>4558</td>
<td>4396</td>
</tr>
</tbody>
</table>

Average Age = 42 Years
Average Service = 11 Years
Interns & Fixterms included in the 4396

<table>
<thead>
<tr>
<th>DISCIPLINE</th>
<th>INTERNSHIP</th>
<th>FIXTERM</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance & Administration</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Human Resources</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Logistics</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mining</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mill</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Strat Development</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Training</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>14</td>
<td>14</td>
<td>28</td>
</tr>
</tbody>
</table>

% of No of Employees per Discipline

- Mining: 43%
- Logistics: 29%
- HR: 5%
- In Training: 7%
- Projects: 0%
- Tech Serv: 1%
- TM3 Mining: 6%
- Central: 2%
- Emp Reps: 0%
- Fin & Adm: 1%
- RCA: 0%
- SHER: 4%
- Conval & Incap: 2%

Image and table data extracted from the provided document.
Demographics

Locals vs. Foreign Labour

<table>
<thead>
<tr>
<th></th>
<th>DP</th>
<th>MP</th>
<th>OF</th>
<th>UN</th>
<th>Grand Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locals</td>
<td>1775</td>
<td>127</td>
<td>493</td>
<td>631</td>
<td>3026</td>
<td>68</td>
</tr>
<tr>
<td>Foreigners</td>
<td>1223</td>
<td>41</td>
<td>42</td>
<td>94</td>
<td>1400</td>
<td>32</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2998</td>
<td>168</td>
<td>535</td>
<td>725</td>
<td>4426</td>
<td>100</td>
</tr>
</tbody>
</table>

Total Mine

- Locals: 68%
- Foreigners: 32%

Total Mine Foreigners as on 16 March 2007

<table>
<thead>
<tr>
<th>Country</th>
<th>DP</th>
<th>MP</th>
<th>OF</th>
<th>UN</th>
<th>Grand Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botswana</td>
<td>76</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>Lesotho</td>
<td>321</td>
<td>11</td>
<td>11</td>
<td>65</td>
<td>358</td>
<td>26</td>
</tr>
<tr>
<td>Mozambique</td>
<td>739</td>
<td>26</td>
<td>13</td>
<td>65</td>
<td>843</td>
<td>60</td>
</tr>
<tr>
<td>Swaziland</td>
<td>87</td>
<td>3</td>
<td>15</td>
<td>14</td>
<td>119</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1223</td>
<td>41</td>
<td>42</td>
<td>94</td>
<td>1400</td>
<td>100</td>
</tr>
</tbody>
</table>

Foreigners

- Swaziland: 9%
- Botswana: 6%
- Mozambique: 59%
- Lesotho: 26%
Labour Turn Over

<table>
<thead>
<tr>
<th>Employee Type</th>
<th>% of No of Employees</th>
<th>Number of Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>13%</td>
<td>9</td>
</tr>
<tr>
<td>Deserted</td>
<td>13%</td>
<td>9</td>
</tr>
<tr>
<td>Dismissal</td>
<td>9%</td>
<td>6</td>
</tr>
<tr>
<td>Contract Exp</td>
<td>6%</td>
<td>4</td>
</tr>
<tr>
<td>Incapacitated</td>
<td>33%</td>
<td>22</td>
</tr>
<tr>
<td>Resign</td>
<td>21%</td>
<td>14</td>
</tr>
<tr>
<td>Retirement</td>
<td>4%</td>
<td>3</td>
</tr>
<tr>
<td>Seconded</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Retrenched</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.00%</td>
<td>67</td>
</tr>
</tbody>
</table>

LTO from January 2007

<table>
<thead>
<tr>
<th>Month</th>
<th>January-07</th>
<th>February-07</th>
<th>March-07</th>
<th>April-07</th>
<th>May-07</th>
<th>June-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total LTO</td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>July-07</th>
<th>August-07</th>
<th>September-07</th>
<th>October-07</th>
<th>November-07</th>
<th>December-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total LTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average per month 2006 = 31
Engagements

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Percentage</th>
<th>New Engagements</th>
</tr>
</thead>
<tbody>
<tr>
<td>F&A</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>HR</td>
<td>11%</td>
<td>12</td>
</tr>
<tr>
<td>Training</td>
<td>40%</td>
<td>42</td>
</tr>
<tr>
<td>Logistics</td>
<td>41%</td>
<td>43</td>
</tr>
<tr>
<td>Mill</td>
<td>3%</td>
<td>3</td>
</tr>
<tr>
<td>Mining</td>
<td>2%</td>
<td>2</td>
</tr>
<tr>
<td>Central</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>Strat Dev</td>
<td>4%</td>
<td>4</td>
</tr>
<tr>
<td>Grand Total</td>
<td>100%</td>
<td>106</td>
</tr>
</tbody>
</table>

Training = Leanerships

Engagements from January 07

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Designated</th>
<th>Non Designated</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>F&A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HR</td>
<td>12</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Training</td>
<td>41</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>Logistics</td>
<td>31</td>
<td>12</td>
<td>43</td>
</tr>
<tr>
<td>Mill</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mining</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Central</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Strat Dev</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Grand Total</td>
<td>90</td>
<td>16</td>
<td>106</td>
</tr>
</tbody>
</table>

Note: 89% of the employees engaged is from the Designated group
Employee Accommodation
Off-mine Management of HIV/AIDS
Sexually Transmitted Infections per year

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>848</td>
</tr>
<tr>
<td>2002</td>
<td>769</td>
</tr>
<tr>
<td>2003</td>
<td>611</td>
</tr>
<tr>
<td>2004</td>
<td>352</td>
</tr>
<tr>
<td>2005</td>
<td>282</td>
</tr>
<tr>
<td>2006</td>
<td>276</td>
</tr>
</tbody>
</table>
Community Projects

- Dialogue and communication with communities
- School Nutritional Program to 2365 learners mainly orphans
- Care for the Disabled
- Philani orphans project
- South Deep Pre – Primary School
- Joseph Ditsele Primary School
- Hillshaven Community Center
- Hillshaven Library
- Westonaria Centre for abused women and children
School Nutrition Programme
School Nutrition Programme
South Deep pre–school
OBJECTIVE

TO IMPLEMENT A SUSTAINABLE INFRASTRUCTURE TO PROVIDE HOME BASED CARE AND INCOME GENERATION SUPPORT TO MITIGATE THE SOCIAL AND ECONOMIC IMPACT THAT AIDS AND MINE ACCIDENTS HAVE ON FAMILIES OF OUR EX EMPLOYEES

PROJECTS

• Care One
• Care Two
• Care Positive
• Home Based Care
• President’s Tlhokomalong (Care) Fund
Social & Labour Plan Status

- Everything finished except procurement section
- Finalization by 26 March 2007
“On Purpose!”

“Changing Minds for Good”